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1. Introduction

Inflation is the main paradigm for understanding the initial conditions for the cosmological

perturbations in the early Universe. The observation of the temperature anisotropy of

the cosmic microwave background (CMB) supports the standard inflation scenario that

predicts a scale-invariant and Gaussian spectrum, except for some anomalies. An obvious

signature of such an anomaly is the observation of a spectrum index n 6= 1, which suggests

that the spectrum is not exactly scale-invariant [1]. The observation of n 6= 1 is important

because it distinguishes several inflationary models. In this paper, we consider another

signature of inflation: non-Gaussianity in the spectrum [2, 3]. In fact, some inflationary

models predict some level of non-Gaussianity in the spectrum. For example, generation of

non-Gaussian perturbations may occur (1) during inflation by a step-like potential [4], (2)

during inflation by a kinetic term [5], (3) during inflation by a modulated velocity [6, 7], (4)

at the end of inflation [8 – 10], (5) after inflation at (p)reheating [11 – 14], and (6) long after

inflation [15, 17 – 19]. Except for cases (1) and (2), long-wavelength inhomogeneities of a

light field give rise to non-Gaussianity. It is important to consider models of inflation in

which some level of non-Gaussianity follows when a curvature perturbation is generated. It

would also be interesting to consider possibilities for adding non-Gaussian perturbations at

some event in the early Universe, if it appears as a natural consequence of basic properties of

the model. In this paper, we consider reheating after inflation with a non-standard kinetic

term. Reheating is a common feature of the inflationary scenario, and a non-standard

kinetic term arises naturally in some string inspired models and also in other extended

models of general gravity.

2. The model

We consider preheating in a theory of two interacting scalar fields {φ, χ} with moduli σ

with non-canonical kinetic term:

S =

∫

d4x
√−g

[

1

2
M2

pR− ω(σ)

2
(∂µφ) (∂µφ)

−1

2
(∂µχ) (∂µχ) − 1

2
(∂µσ) (∂µσ) − V (φ, χ, σ),

]

(2.1)
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where Mp is the reduced Planck mass and the potential V (φ, χ, σ) is given by

V (φ, χ, σ) =
1

2
mφφ

2 +
1

2
mχχ

2 +
g2

2
φ2χ2 +W (σ). (2.2)

We assume for simplicity that φ is the inflaton field, which starts oscillating about the

minimum after inflation, and χ is the preheat field whose perturbations δχ grow rapidly

near the enhanced symmetric point (ESP). Inflation ends and oscillation starts when φ =

φ0, which gives the initial amplitude of the φ-oscillation. The background fields evolve

according to the equations

φ̈+ 3Hφ̇+
(m2

φ + g2χ2)φ

ω
+
ωσ

ω
φ̇σ̇ = 0 (2.3)

χ̈+ 3Hφ̇+ (m2
χ + g2φ2)χ = 0 (2.4)

σ̈ + 3Hσ̇ +Wσ − 1

2
ωσφ̇

2 = 0, (2.5)

where the subscripts for ω and W indicate derivatives with respect to the fields. The

Hubble parameter is given by

H2 ≡ 1

3M2
p

[

1

2
ωφ̇2 +

1

2
χ̇2 +

1

2
σ̇2 + V

]

. (2.6)

For the instant preheating scenario, the velocity of the oscillating field at the bottom of

the potential determines the number density of the preheat field. For a standard kinetic

term (i.e., for ω ≡ 1), the velocity of the oscillating field is given by

φ̇max ≃ mφφ0, (2.7)

while for a non-standard kinetic term, it is given by

φ̇max ≃ mφφ0√
ω
. (2.8)

Therefore, φ̇max at the bottom of the potential is different in different Hubble patches if

the perturbation δω is inherited from the long-wavelength moduli inhomogeneities δσ. The

condition for the perturbations of σ to cross the horizon during inflation is

ηeff
σ = M2

p

[

Wσσ − ωσσφ̇
2/2

V

]

≃M2
p





Wσσ

V
− 1

2V

ωσσ

ω2

(

m2
φφ

3H

)2


 ∼ −η2
φ

ωσσφ
2

ω2
≪ 1, (2.9)

where Wσσ/3H
2 ≪ 1 is assumed. σ moves slowly during inflation if the following slow-roll

condition is satisfied:

ǫeffσ =
M2

p

2

[

Wσ − ωσφ̇
2/2

V

]2

∼ η4
φω

2
σφ

2

(

φ2

M2
p

)

≪ 1, (2.10)

where
M2

p

2

(

Wσ

V

)2 ≪ 1 is assumed. To understand these conditions, we consider a specific

choice of ω:

ω = e
α σ2

M2
∗ , (2.11)
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where α is a dimensionless constant and M∗ is the cut-off scale of the effective theory. We

find from eq. (2.9) that

−4α2 σ
2

M2
∗
− 2α≪ M2

∗ω

η2
φφ

2
. (2.12)

Note that the field σ has negative ηeff
σ for α > 0. The condition from the effective ǫ-

parameter leads to a similar condition

4α2 σ
2

M2
∗
≪

M2
∗M

2
p

ω2η4
φφ

4
. (2.13)

Following these conditions, we assume a natural condition σ ≪ M∗ and consider a slow-

rolling σ field during inflation.

Considering the reheating process after inflation, the inflaton field must finally decay

into the Standard-Model (SM) particles. Here we consider the primary decay process of

the inflaton field: φ → χ. Since the interaction depends on the values of the fields φ and

χ, the background field trajectories will be very sensitive to the initial conditions and the

non-perturbative effects of the preheating process, which means that the general evaluation

of the cosmological parameters typically requires numerical calculations. In this paper, we

consider the instant preheating scenario [20] so that an analytic estimate can be made for

the non-linear parameter for the CMB spectrum. Applying the results of ref. [20], the

comoving number density of the preheat χ particles produced at the ESP during the first

half-oscillation is

nχ =
(g|φ̇max|)3/2

8π
exp

{

−πg|φmin|2
|φ̇max|

}

≃ (g|φ̇max|)3/2

8π
. (2.14)

Due to the interaction term, the effective mass of the preheat field increases as the os-

cillating field moves away from the bottom of the potential. Thus, the preheat particles

produced soon acquire large mass and decay into ψ particles with a decay rate Γχ. De-

pending on the couplings between particles, the decay process from φ to ψ is so fast that

all the energy stored in the oscillating field may turn into ψ particles. The ψ particles then

thermalize to complete the reheating process. To determine the curvature perturbations

produced during the reheating process, it is important to consider the relation ρχ ∝ nχ.1

Then, we obtain the curvature perturbation ζ generated during preheating:

ζ ≡ −ψ −H
δρχ

ρ̇χ
≃ β

δnχ

nχ
, (2.15)

where β is a proportionality constant that depends on the redshifting of the preheat par-

ticles, and in the last step we considered a spatially flat gauge. To obtain an analytic

1Here we followed the first paper in ref. [11] and assumed instant decay (i.e., the preheat particles decay

at mχ ≃ gφc before φ turns around. It is possible to construct inhomogeneous preheating models without

the instant decay. See for example ref. [16].
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estimate of the curvature perturbation, from eq. (2.14) we find

δnχ

nχ
=

[

3

2
+
πg|φmin|2
|φ̇max|

]

δ|φ̇max|
|φ̇max|

− 2πg|φmin|2
|φ̇max|

δ|φmin|
|φmin|

≃ 3

2

δ|φ̇max|
|φ̇max|

. (2.16)

Here, φ̇max is given by eq. (2.8), and the long-wavelength inhomogeneities of σ causes δω.

According to ref. [11], multi-field inflation may lead to a significant δφmin and to φmin 6= 0

at the minimum of the oscillation, which causes significant inhomogeneities of nχ. However,

considering single-field or symmetric multi-field potential, the minimum of the oscillation

trajectory is at φ = 0, and hence we may disregard terms proportional to φmin = 0. The

long-wavelength inhomogeneities of δω then lead to fluctuations of φ̇max:

δφ̇max ≃ −1

2

δω

ω
φ̇max, (2.17)

which eventually gives the curvature perturbation:

ζ ≃ β
δnχ

nχ
≃ 3β

4

δ|ω|
|ω| . (2.18)

For the specific choice of ω given by eq. (2.11), we find

δω

ω
≃ ωσ

ω
δσ +

1

2

ωσσ

ω
(δσ)2 ≃ α

2σ

M∗

δσ

M∗
+

[

2α2 σ
2

M2
∗

+ α

]

(δσ)2

M2
∗

(2.19)

and the curvature perturbation is then

ζ ≃ 3β|α|
4

∣

∣

∣

∣

2σ

M∗

δσ

M∗
+

{

2α
σ2

M2
∗

+ 1

}

(δσ)2

M2
∗

∣

∣

∣

∣

. (2.20)

The level of the non-Gaussianity is specified by the non-linear parameter fNL, which

is defined by the Bardeen potential Φ:

Φ = ΦGaussian + fNLΦ2
Gaussian, (2.21)

which is connected to the curvature perturbation ζ through

Φ = −3

5
ζ. (2.22)

If the first-order perturbation is dominantly generated by the usual inflaton perturbation,

the second-order perturbation that is generated by the long-wavelength moduli inhomo-

geneities is not correlated to the first-order perturbation. In this case, the estimate of the

non-linear parameter is given by [17]:

6

5
fNL ≃ 1

N4
φ

[

N2
σNσσ +N3

σσPσ log(kbL)
]

, (2.23)
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where the curvature perturbation ζ is expanded by the δN formalism as

ζ ≃ Nφδφ+Nσδσ +
1

2
Nφφδφ

2 +
1

2
Nσσδσ

2 + . . . , (2.24)

and the perturbation can be separated into two parts:

ζ = ζ(φ) + ζ(σ). (2.25)

Here kb ≡ min{ki} (i = 1, 2, 3) is the minimum wavevector of the bispectrum and L is

the size of a box in which the perturbation is defined. The equation for the non-linear

parameter can be simplified to obtain [21]

fNL ≃
(

1

1300

Nσσ

N2
φ

)3

. (2.26)

Assuming σ ≪M∗ at reheating, we obtain

fNL ≃
(

106 × αβ
H2

M2
∗

)3

, (2.27)

which becomes large as H approaches the cut-off scale M∗. Although it depends on the

parameters of the model, the result is very interesting since the upper bound for fNL may

apply a significant upper bound on the inflation energy scale. The calculation suggests that

the observation of the non-linear parameter fNL may allow the inflation energy scale to be

determined, dependent on the model parameters determined by some other experiments.

3. Conclusions and discussions

In this paper, we considered reheating after inflation with a non-standard kinetic term. We

have shown that the difference in the kinetic term in different Hubble patches inherited

from the long-wavelength moduli inhomogeneities δσ causes generation of a significant level

of non-Gaussianity after inflation.

For completeness, we consider the tachyonic evolution of the light field σ during

the oscillating phase. During the half-oscillation the oscillating field φ follows φ̇(t) =

−mφ√
ω
φ0 sin

mφ√
ω
t, which leads to the equation of motion for the light field σ:

σ̈ + 3Hσ̇ +Wσ − 1

2
ωσ

m2
φ

ω
φ2

0 sin2mφt = 0. (3.1)

Omitting the term proportional to σ̇ and disregarding the variation of ω, the equation

can be reduced to the well-known Mathieu equation for the specific choice of ω given by

eq. (2.11). However, comparing the above equation with the standard preheating equation

for the original model [20], the coupling g in the standard interaction term g2φ2σ2/2 is

replaced by an effective coupling

geff ∼ α
m2

φ

M2
∗ω

, (3.2)

– 5 –



J
H
E
P
1
0
(
2
0
0
8
)
0
8
9

which is very small if mφ ≪M∗. We can also find a small slow-roll parameter ǫeffσ ≪ 1 for

σ ≪M∗. Therefore, in this case the light field σ is also slow-rolling in the oscillating phase.

Using a similar analysis for the initial condition σ ≪ M∗, we find that the fluctuation of

the light field δσ does not evolve exponentially during the oscillating phase, even if ηeff
σ is

negative (i.e., tachyonic) during this phase. Besides the possibility of exponential growth

of the long-wavelength fluctuation δσ, which may take place for σ ∼M∗ and ηeff
σ < 0, it is

possible to consider a more generic form of the effective action. In this paper, we considered

a simple form of the potential assuming a minimum at φmin = 0. However, in more generic

cases we may consider a symmetry breaking potential where the global minimum of the

potential is not at the origin. Recently, preheating with a non-standard kinetic term and

with a symmetry breaking potential has been studied by Lachapelle et al. [22], in which

the oscillating field determines the coefficient ω. It has been shown that the non-standard

kinetic term may give rise to a more efficient preheating channel than the usual process

caused by the standard interaction term. It is possible to extend our arguments to more

generic actions based on some specific string models containing non-standard kinetic terms

that depend on several moduli fields. We can also extend our analysis to more generic

initial conditions. In such cases, non-standard kinetic terms may give rise to more efficient

preheating than the standard interaction, as discussed by Lachapelle et al., or they may

cause tachyonic enhancement of δσ during oscillation. These effects may lead to a more

significant level of non-Gaussianity and to a more effective constraint for the effective action.

These complementary scenarios requires numerical study, hence they will be considered in

future works.
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